

Automatisches Beweisen mittels Gröbnerbasen in der Geometrie, Fachbücher von Daniel Heck
In dieser Arbeit wird durch das automatische Beweisen mittels Gröbnerbasen die Dualität der dreidimensionalen regelmäßigen Po... Mehr erfahren
Finde die besten Angebote
Bester Preis44 Punkte

Galaxus
Versandkostenfrei
Lieferzeit: 2-4 Werktage
Versandkostenfrei | Lieferzeit: 2-4 Werktage
Ähnliche Produkte
Produktdetails
In dieser Arbeit wird durch das automatische Beweisen mittels Gröbnerbasen die Dualität der dreidimensionalen regelmäßigen Polyedern sowie die Dualität von ausgewählten vierdimensonalen regelmäßigen Polytopen nachgewiesen. Bei den dreidimensionalen regelmäßigen Polyeder handelt es sich um die platonischen Körper. Diese sind der Tetra-, Hexa-, Okta-, Dodeka- und Ikosaeder. Der Hexaeder ist der bekannte Würfel. Er ist dual zum Oktaeder. Das bedeutet, dass die Flächenmittelpunkte aller Flächen des Hexaeders einen Oktaeder bilden. Umgekehrt gilt bei den regelmäßigen Körpern die gleiche Beziehung. Diese Beziehung ist in der Mathematik schon lange bekannt und kann geometrisch leicht erklärt werden. Wie im dreidimensionalen Raum gibt es auch in höherdimensionalen Räumen regelmäßige Polytope. Diese besitzen ebenfalls duale Beziehungen untereinander. Die vierte Dimension nimmt hierbei eine Sonder.
Informationen
Lieferzeit:2-4 Werktage
Marke:AV

